William E. Boyce, Richard C. DiPrima conserva la misma estructura general de la organización como sus predecesores populares, esta edición combina un sonido y la exposición precisa de la teoría elemental de ecuaciones diferenciales con considerable material sobre métodos de solución, análisis y aproximación que han demostrado ser útiles en una amplia variedad de aplicaciones.

Este texto actualizado incluye casi 300 problemas nuevos, muchos de los que asumen la disponibilidad de las computadoras; una discusión más amplia de control de errores y la estabilidad; numerosos problemas y ejemplos nuevos y revisados ​​que investigan la forma en que una solución depende de uno o varios parámetros; y un mayor énfasis en la visualización.

Un best seller perenne diseñado para ingenieros y científicos que necesitan utilizar Primaria Ecuaciones diferenciales en su trabajo y estudios.

Chapter 1. Introduction.

1.1 Some Basic Mathematical Models; Direction Fields.
1.2 Solutions of Some .
1.3 Classi.cation of Differential Equations.
1.4 Historical Remarks.

Chapter 2. First Order Differential Equations.

2.1 Equations; Method of Integrating Factors.
2.2 Separable Equations.
2.3 Modeling with First Order Equations.
2.4 Differences Between Linear and Nonlinear Equations.
2.5 Autonomous Equations and Population Dynamics.
2.6 Exact Equations and Integrating Factors.
2.7 Numerical Approximations: Euler’s Method.
2.8 The Existence and Uniqueness Theorem.
2.9 First Order Difference Equations.

Chapter 3. SecondOrd er Linear Equations.

3.1 Homogeneous Equations with Constant Coef.cients.
3.2 Fundamental Solutions of Linear Homogeneous Equations.
3.3 Linear Independence and the Wronskian.
3.4 Complex Roots of the Characteristic Equation.
3.5 Repeated Roots; Reduction of Order.
3.6 Nonhomogeneous Equations; Method of Undetermined Coeficients.
3.7 Variation of Parameters.
3.8 Mechanical and Electrical Vibrations.
3.9 Forced Vibrations.

Chapter 4. Higher Order Linear Equations.

4.1 General Theory of nth Order Linear Equations.
4.2 Homogeneous Equations with Constant Coeficients.
4.3 The Method of Undetermined Coeficients.
4.4 The Method of Variation of Parameters.

Chapter 5.. Series Solutions of Second Order Linear Equations.

5.1 Review of Series.
5.2 Series Solutions Near an Ordinary Point, Part I.
5.3 Series Solutions Near an Ordinary Point, Part II.
5.4 Regular Singular Points.
5.5 Euler Equations.
5.6 Series Solutions Near a Regular Singular Point, Part I.
5.7 Series Solutions Near a Regular Singular Point, Part II.
5.8 Bessel’s Equation.

Chapter 6. The Laplace Transform.

6.1 De.nition of the Laplace Transform.
6.2 Solution of Initial Value Problems.
6.3 Step Functions.
6.4 Differential Equations with Discontinuous Forcing Functions.
6.5 Impulse Functions.
6.6 The Convolution Integral.

Chapter 7. Systems of First Order Linear Equations.

7.1 Introduction.
7.2 Review of Matrices.
7.3 Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors.
7.4 Basic Theory of Systems of First Order Linear Equations.
7.5 Homogeneous Linear Systems with Constant Coef.cients.
7.6 Complex Eigenvalues.
7.7 Fundamental Matrices.
7.8 Repeated Eigenvalues.
7.9 Nonhomogeneous Linear Systems.

Chapter 8. Numerical Methods.

8.1 The Euler or Tangent Line Method.
8.2 Improvements on the Euler Method.
8.3 The Runge-Kutta Method.
8.4 Multistep Methods.
8.5 More on Errors; Stability.
8.6 Systems of First Order Equations.

Chapter 9. Nonlinear Differential Equations andStability.

9.1 The Phase Plane: Linear Systems.
9.2 Autonomous Systems and Stability.
9.3 Almost Linear Systems.
9.4 Competing Species.
9.5 Predator-Prey Equations.
9.6 Liapunov’s Second Method.
9.7 Periodic Solutions and Limit Cycles.
9.8 Chaos and Strange Attractors: The Lorenz Equations.
Answers to Problems.
Index.

Título Original: Elementary Differential Equations and Boundary Value Problems
Autor/es: William E. Boyce / Richard C. Diprima
Edición: 8va Edición
ISBN: 0471729574 | 978-0471729570
Tipo: Solucionario
Formato: PDF
Idioma: Inglés
75%
75%
VALORACIÓN